Prediction of ferromagnetic characteristics of gold doped SiC nanotubes for application in spintronic devices

Authors

  • V.N. Jafarova Azerbaijan State Oil and Industry University, 20 Azalig Ave., AZ-1010, Baku, Azerbaijan & Khazar University, 41 Mehseti Str., AZ1096, Baku, Azerbaijan & Ministry of Science and Education Republic of Azerbaijan, Institute of Physics, 131 H. Javid Ave., AZ-1143, Baku, Azerbaijan
  • V.I. Eminova Ministry of Science and Education Republic of Azerbaijan, Institute of Physics, 131 H. Javid Ave., AZ-1143, Baku, Azerbaijan & French-Azerbaijani University (UFAZ) under Azerbaijan State Oil and Industry University, 183 Nizami Str., AZ-1010, Baku, Azerbaijan
  • M.A. Musaev Azerbaijan State Oil and Industry University, 20 Azalig Ave., AZ-1010, Baku, Azerbaijan
  • I. C. Scurtu Romanian Naval Academy, 1 Fulgerului Str., 900218, Constanta, Romania

DOI:

https://doi.org/10.47577/technium.v26i.12149

Keywords:

SiC:Au, nanotube, chiral, antiferromagnetic, half-metallic

Abstract

Single walled (6,0) gold doped SiC nanotube systems were studied by first principles modeling. We observed the electronic structures of SiC nanomaterials are significantly modified by the introduction of gold, and these systems exhibit magnetic properties. While the configurations of single walled (6,0) gold doped SiC nanotubes, the energy gap width of the spin-up states decreases, and these systems exhibit a semi-metallic character. Partial density of states analysis shows that the electron orbitals arise from contributions from the C p orbitals and the 4d  transition metal d orbitals. First principles results of total energy predicted the stability of the antiferromagnetic phase.

References

W. Zhang, F. Zhang, Z. Zhang, S. Lu, Y. Yang, “Electronic structure and magnetism of Fe-doped SiC nanotubes,” Science China Physics, Mechanics & Astronomy, vol. 53, no. 9, pp. 1582-1589, 2010, doi: 10.1007/s11433-010-4089-8.

R. Madar, “Silicon carbide in contention,” Nature, vol. 430, pp. 974-975, 2004, doi: 10.1038/430974a.

A. Gali, “Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes,” Phys. Rev. B, vol. 73, pp. 245415-1-9, 2006, doi: 10.1103/PhysRevB.73.245415.

K.M. Alam, A.K. Ray, “Hybrid density functional study of armchair SiC nanotubes,” Phys. Rev. B, vol. 77, no. 3, pp. 035436-1-10, 2008, doi: 10.1103/PhysRevB.77.035436.

B. Baumeier, P. Krüger, J. Pollmann, “Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes,” Phys. Rev. B, vol. 76, no. 8, pp. 085407-1-10, 2007, doi: 10.1103/PhysRevB.76.085407.

S. Mukherjee, A.K. Ray, “Ab initio study of molecular hydrogen interaction with SiC nanotube-a precursor to hydrogen storage,” J. Comput. Theor. Nanosci., vol .5, no. 7, pp. 1210-1219, 2008, doi: 10.1166/jctn.2008.2556.

J.S. Ponraj, S.C. Dhanabalan, G. Attolini, G. Salviati, “SiC nanostructures towardbiomedical applications and its future challenges,” Crit. Rev. Solid State Mater. Sci., vol. 41, no. 5, pp. 430-446, 2016, doi: 10.1080/10408436.2016.1150806.

R. Yakimova, Jr.R. M. Petoral, G.R. Yazdi, C. Vahlberg, A.L. Spetz, K. Uvdal, “Surface functionalization and biomedical applications based on SiC,” J. Phys. D: Appl. Phys., vol. 40, pp. 6435-6442, 2007, doi: 10.1088/0022-3727/40/20/S20.

A.M. Manal, S.H. Kenawy, M.A.H. Esmat, T.E.-B. Gehan, I.K. El Zawawi, “Influence of silicon carbide on structural, optical and magnetic properties of Wollastonite/Fe2O3 nanocomposites,” Ceram. Int., vol. 47, no. 9, pp. 12047-12055, 2021, doi: 10.1016/j.ceramint.2021.01.048.

M.L. Sun, Q.Q. Ren, Y.M. Zhao, J.P. Chou, J. Yu, W.C. Tang, “Electronic and magnetic properties of 4D series transition metal substituted graphene: A first-principles study,” Carbon, vol. 120, pp. 265–273, 2017, doi: 10.1016/j.carbon.2017.04.060.

E. Santos, A. Ayuela, D. Sanchez-Portal, “First-principles study of substitutional metal impurities in gr aphene: Structural, electronic and magnetic properties,” New J. Phys., vol. 12, no. 5, pp. 053012-1-32, 2010, doi: 10.1088/1367-2630/12/5/053012.

J.X. Zhao, Y.H. Ding, “Silicon carbide nanotubes functionalized by transition metal atoms: A density-functional study,” J. Phys. Chem. C, vol. 112, no. 7, pp. 2558-2564, 2008, doi: 10.1021/jp073722m.

H. Heidarzadeh, “Transition metal-doped 3C-SiC as a promising material for intermediate band solar cells,” Opt. Quantum Electron., vol. 51, no. 1, pp. 32-1-11, 2019, doi: 10.1007/s11082-019-1742-y.

A.T. Mulatu, K.N. Nigussa, L.D. Deja, “Electronic and optical properties of TM-doped (8,0) SiC SWNT and the prospect of hydrogen storage,” Opt. Mater. A, vol. 134, pp. 113094-1-12, 2022, doi: 10.1016/j.optmat.2022.113094.

Ch. Vatankhah, Badehian H.A., “Electronic and optical properties of armchair silicon carbide nanotubes from first principles,” Optik, vol. 237, pp. 166740-1-7, 2021, doi: 10.1016/j.ijleo.2021.166740.

W. Wang, J. Xu, Y. Zhang, G. Li, “First-Principles Study of Electronic Structure and Optical Properties of Silicon/Carbon Nanotube,” Comp. Chem., vol. 5, no. 4, pp. 159-171, 2017, doi: 10.4236/cc.2017.54013.

S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys. Rev. B, vol. 57, no. 3, pp. 1505-1509, 1998, doi: 10.1103/PhysRevB.57.1505.

A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, “Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators,” Phys.Rev., vol. 52, no. 8, pp. R5467-R5471, 1995, doi: 10.1103/physrevb.52.r5467.

Downloads

Published

2024-12-13

How to Cite

Jafarova, V., Eminova, V., Musaev, M., & Scurtu, I. C. (2024). Prediction of ferromagnetic characteristics of gold doped SiC nanotubes for application in spintronic devices. Technium: Romanian Journal of Applied Sciences and Technology, 26, 1–8. https://doi.org/10.47577/technium.v26i.12149